Numpy Tutorial
A practical handbook for learning NumPy and performing efficient numerical computations in Python. This guide covers NumPy arrays, indexing, slicing, vectorized operations, mathematical functions, and basic linear algebra, helping learners work with data faster and more effectively.
9 Modules
77 Lessons
English
1.5 Hrs
Reading Plan
MODULE 1
Basics of Numpy
NumPy Introduction1 min
Installing NumPy Library1 min
Python NumPy Arrays1 min
NumPy Data Types1 min
Array Creation - Empty, Zeroes and Ones1 min
Create ndarray with Data1 min
ndarray with Numerical Range1 min
Indexing and Slicing1 min
Advance indexing of ndarray1 min
Concept of Broadcasting1 min
ndarray Sorting1 min
ndarray Copy and View1 min
Accessing Array Elements1 min
NumPy Matrix Multiplication1 min
MODULE 2
Numpy Basic Functions
MODULE 3
Numpy Mathematical Functions
MODULE 4
Numpy String Functions
NumPy islower() function1 min
NumPy find() function1 min
NumPy count() function1 min
NumPy istitle() function1 min
NumPy decode() function1 min
NumPy encode() function1 min
NumPy replace() function1 min
NumPy splitlines() function1 min
NumPy add() function1 min
NumPy multiply() function1 min
NumPy center() function1 min
NumPy join() function1 min
NumPy split() function1 min
NumPy title() function1 min
NumPy lower() function1 min
NumPy isupper() function1 min
NumPy isnumeric() function1 min
NumPy isalpha() function1 min
NumPy index() function1 min
NumPy startswith() function1 min
NumPy isspace() function1 min
NumPy isdigit() function1 min
NumPy isdecimal() function1 min
NumPy upper() function1 min
NumPy capitalize() function1 min
NumPy swapcase() function1 min
NumPy strip() function1 min
Numpy char.partition() function1 min
MODULE 5
Numpy Statistical Functions
MODULE 6
Matrix Library
MODULE 7
Binary Operations
MODULE 8
Linear Algebra
Contributors
Numpy Tutorial
This handbook introduces NumPy step by step, starting with array creation and basic operations. You’ll learn how NumPy handles data efficiently, perform computations without loops, and work with multidimensional arrays. The focus stays on practical usage for data processing, scientific computing, and machine learning foundations.
Why This Handbook Matters
NumPy is the foundation of Python’s data and scientific ecosystem. Understanding NumPy allows developers and data practitioners to handle large datasets efficiently and build faster, more reliable numerical applications.
Ideal Learners for This Handbook
This handbook is ideal for Python learners moving into data-related fields, students exploring data science or machine learning, and developers who want to perform efficient numerical computations. It’s also useful for anyone working with large datasets in Python.
Prerequisites
This course is suitable for:
- Basic understanding of Python programming
- Familiarity with variables, loops, and functions
- Basic knowledge of lists and data types
- Willingness to work with numerical data










